miR-21 Promotes Human Nucleus Pulposus Cell Proliferation through PTEN/AKT Signaling

نویسندگان

  • Hongzhe Liu
  • Xiangwang Huang
  • Xiangyang Liu
  • Sheng Xiao
  • Yi Zhang
  • Tiecheng Xiang
  • Xiongjie Shen
  • Guoping Wang
  • Bin Sheng
چکیده

The precise role of nucleus pulposus cell proliferation in the pathogenesis of intervertebral disc degeneration remains to be elucidated. Recent findings have revealed that microRNAs, a class of small noncoding RNAs, may regulate cell proliferation in many pathological conditions. Here, we showed that miR-21 was significantly upregulated in degenerative nucleus pulposus tissues when compared with nucleus pulposus tissues that were isolated from patients with idiopathic scoliosis and that miR-10b levels were associated with disc degeneration grade. Moreover, bioinformatics target prediction identified PTEN as a putative target of miR-21. miR-21 inhibited PTEN expression by directly targeting the 3'UTR, and this inhibition was abolished through miR-21 binding site mutations. miR-21 overexpression stimulated cell proliferation and AKT signaling pathway activation, which led to cyclin D1 translation. Additionally, the increase in proliferation and cyclin D1 expression induced by miR-21 overexpression was almost completely blocked by Ly294002, an AKT inhibitor. Taken together, aberrant miR-21 upregulation in intervertebral disc degeneration could target PTEN, which would contribute to abnormal nucleus pulposus cell proliferation through derepressing the Akt pathway. Our study also underscores the potential of miR-21 and the PTEN/Akt pathway as novel therapeutic targets in intervertebral disc degeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

miR-21 increases c-kit+ cardiac stem cell proliferation in vitro through PTEN/PI3K/Akt signaling

The low survival rate of cardiac stem cells (CSCs) in the ischemic myocardium is one of the obstacles in ischemic cardiomyopathy cell therapy. The MicroRNA (miR)-21 and one of its target protein, the tensin homolog deleted on chromosome ten (PTEN), contributes to the proliferation of many kinds of tissues and cell types. It is reported that miR-21 promotes proliferation through PTEN/PI3K/Akt pa...

متن کامل

MicroRNA-10b Promotes Nucleus Pulposus Cell Proliferation through RhoC-Akt Pathway by Targeting HOXD10 in Intervetebral Disc Degeneration

Aberrant proliferation of nucleus pulposus cell is implicated in the pathogenesis of intervertebral disc degeneration. Recent findings revealed that microRNAs, a class of small noncoding RNAs, could regulate cell proliferation in many pathological conditions. Here, we showed that miR-10b was dramatically upregulated in degenerative nucleus pulposus tissues when compared with nucleus pulposus ti...

متن کامل

Mesenchymal stem cells deliver exogenous miR‐21 via exosomes to inhibit nucleus pulposus cell apoptosis and reduce intervertebral disc degeneration

Although mesenchymal stem cells (MSCs) transplantation into the IVD (intervertebral disc) may be beneficial in inhibiting apoptosis of nucleus pulposus cells (NPCs) and alleviating IVD degeneration, the underlying mechanism of this therapeutic process has not been fully explained. The purpose of this study was to explore the protective effect of MSC-derived exosomes (MSC-exosomes) on NPC apopto...

متن کامل

miR-21 Reduces Hydrogen Peroxide-Induced Apoptosis in c-kit+ Cardiac Stem Cells In Vitro through PTEN/PI3K/Akt Signaling

The low survival rate of cardiac stem cells (CSCs) in the infarcted myocardium hampers cell therapy for ischemic cardiomyopathy. MicroRNA-21 (miR-21) and one of its target proteins, PTEN, contribute to the survival and proliferation of many cell types, but their prosurvival effects in c-kit+ CSC remain unclear. Thus, we hypothesized that miR-21 reduces hydrogen peroxide- (H2O2-) induced apoptos...

متن کامل

TGF-β1 promotes scar fibroblasts proliferation and transdifferentiation via up-regulating MicroRNA-21

TGF-β1, upregulated in keloid tissue, promotes the proliferation, collagen formation and differentiation of dermal fibroblasts. miR-21 is one of microRNAs first found in human genome. The aim of our study is to explore the mechanisms of miR-21 in TGF-β1-induced scar fibroblasts proliferation and transdifferentiation. In the present study, first we found that TGF-β1 promoted scar fibroblasts pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2014